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We consider the problem of predicting {0, 1 }-valued functions on R" and smaller
domains, based on their values on randomly drawn points. Our model is related to
Valiant’s PAC learning model, but does not require the hypotheses used for predic-
tion to be represented in any specified form. In our main result we show how to
construct prediction strategies that are optimal to within a constant factor for any
reasonable class F of target functions. This result is based on new combinatorial
results about classes of functions of finite VC dimension. We also discuss more
computationally efficient algorithms for predicting indicator functions of axis-
parallel rectangles, more general intersection closed concept classes, and halfspaces
in R". These are also optimal to within a constant factor. Finally, we compare the
general performance of prediction strategies derived by our method to that of those
derived from methods in PAC learning theory. € 1994 Academic Press, Inc.

1. INTRODUCTION

Let F be a class of {0, 1}-valued functions on a fixed domain X. The
domain can be finite, countably infinite, or R” for some n > 1. We consider
the problem of predicting the value of an unknown target function f € F on
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a randomly drawn point x, e X, given the value of f on randomly drawn
points x, .., x,_, € X. A rule for making such predictions is called a predic-
tion strategy for F. A prediction strategy can be either deterministic or
randomized; i.e., the prediction on x, may be determined by the value of f
on the points x,, .., x, _;, or it may also depend on the value of some other
independent random event.

Given feedback from some external agent that indicates whether or not
the prediction is correct, a prediction strategy can be iterated indefinitely.
In each iteration, a random point is drawn, a prediction is made based on
feedback from previous iterations, and new feedback is received. Each such
iteration is called a trial.

Let us assume that an adversary who knows our prediction strategy is
allowed to choose the target function f € F and the probability distribution
P on X. All points are then drawn independently according to P. We are
interested in finding a prediction strategy for F that, for each 7> 1, mini-
mizes the probability that an incorrect prediction (mistake) is made on trial
t. Since an adversary chooses the target function and the distribution, our
objective is to minimize this probability in the worst case, over all f € F and
distributions P on X. We use M(¢) to denote this worst case probability.

This prediction model is based on the non-probabilistic prediction model
studied in [L87]. There the points x,, x,, ... are directly selected by the
adversary and the object is to make the smallest total number of mistakes.
A closely related model is defined in [A87], and is known as learning from
equivalence queries with counterexamples. Our probabilistic variant of this
model has the advantage that it is applicable even in situations where this
worst case total number of mistakes is infinite, as often occurs when the
domain X is infinite (e.g., R”, or X'*, for some finite alphabet X').

Our probabilistic prediction model is motivated by, and closely related
to, the learnability model of Valiant [Val84, BEHW&7, 89, AL87, R87,
KLPV87], which is often called the Probably Approximately Correct
(PAC) learning model [A87]. In the PAC model the learning algorithm
must output a representation of a hypothesis in some hypothesis class H
when given random examples of some unknown target function in F. The
hypothesis must (with high probability) be a good approximation to the
target function in the sense that (with high probability) it correctly predicts
the value of the function on further examples drawn from the same
distribution. As in our prediction model, these probabilities are calculated
with respect to the worst case over all target functions in F and all
distributions on the domain.

Prediction strategies and learning algorithms both form hypotheses,
although the hypothesis of a prediction strategy is only defined implicitly.
Given the value of the unknown function f on points x,, ..., x, _, from the
previous 7 — 1 trials, the hypothesis h formed by a deterministic prediction
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strategy is defined by how the strategy would predict on each possible x
that might be presented to it in the ¢th trial: #(x) =1 if the prediction is 1,
h{x)=0 otherwise. Randomized prediction strategies form “randomized
hypotheses™ (see, e.g., [Sch90]). Hence our prediction model is essentially
a streamlined version of the PAC model, in which the requirement that
hypotheses be in a certain hypothesis class and be represented in a specified
form has been dropped, and only predictive performance is measured. We
also simplify the model by considering only one probability (i.e., the prob-
ability of a mistake) instead of two (i.e., the probability that the algorithm
produces a hypothesis with small probability of a mistake). The exact rela-
tionship between our prediction model and the PAC model is discussed
further in Sections 4 and 5 below, and in detail in [HKLW91, PW90].

Summary of Results

As in [BEHWS89, L87], our results are of two types: the first type
consists of results that indicate how well a learner can possibly do from the
available information, if computational complexity is not an issue; the
second type considers what can be done in polynomial time.

In our main result (Theorem 2.3} we show that, ignoring computational
complexity, for any reasonable' class F of target functions we can construct
a prediction strategy for F for which the worst case probability of a mistake
on trial ¢, M(t), is within a constant factor of the best possible; we call such
a prediction strategy essentially optimal. Specifically, when this prediction
strategy is applied to target functions from F, then M(s) is at most
VCdim(F)/t, for any ¢ = 1. Here VCdim(F) denotes the Vapnik—Chervonenkis
dimension of F as defined in [HW87] (following [VC71, Vap82]). From a
result in [EHKV89], it can be shown that if F is nontrivial (see Section 3)
and VCdim(F) is finite, then for any prediction strategy for F, M(z) is
Q(VCdim(F)/t), and if VCdim(F) is infinite, results from [BEHW89]
imply that M(z) > {, for all 1> 1 (Theorem 3.1). This shows that the upper
bound is tight to within a constant factor.

Note that this essentially optimal prediction strategy has a pleasant
property when applied to a class F of finite VC dimension. For any
target concept in F and any distribution on X, the expected number of
mistakes during the second half of any sequence of trials is at most

i=ry27+1 YCdim(F)/i <In(2) VCdim(F). For example, if VCdim(F)=4
then when you iterate the sirategy for 100 tnals, the expected number of
mistakes during the last 50 trials is at most 3, and when you iterate it for
1,000,000 trials the expected number of mistakes during the last 500,000
trials is still at most 3. Further results on cumulative mistake bounds are
given in Sections 2 and 3.

' When X = R" we impose certain measurability constraints on F as in {[BEHW89].
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If one can tell in polynomial time whether or not there is any function
in F that is consistent with a sequence of examples, then our general essen-
tially optimal prediction strategy runs in time polynomial in the trial index
t, where the exponent is proportional to VCdim(F). This prediction
strategy is not practical when VCdim(F) is large. However, we can improve
this time bound considerably for many important classes of functions,
including indicator functions for halfspaces and axis-parallel rectangles in
R". We describe essentially optimal prediction strategies for these classes
that run in time polynomial in both ¢ and VCdim(F) (see Examples 2.1
through 2.4).

In Section4 we compare our method of constructing prediction
strategies with another technique for constructing prediction strategies
based on the learning results of [BEHWS89]. The latter technique
constructs a hypothesis that is consistent with the previous trials and
chosen from a fixed class H of possible hypotheses, and uses this hypothesis
to make its prediction. We show that for any H, the probability of making
a mistake at trial 7 for such a prediction strategy is O{log a/«), where o =
t/VCdim(H) (Theorem 4.1). Here we use the techniques of Vapnik and
Chervonenkis [Vap82]. Note that this bound depends on the VC dimen-
sion of the hypothesis space, whereas the optimal bound depends on the
VC dimension of the target class. Any consistent algorithm must have
VCdim(H )= VCdim(F).

This result gives a useful upper bound, since many prediction strategies
that are derived directly from learning algorithms are of the above type.
However, even if VCdim(H ) = VCdim(F), for sufficiently large ¢ this bound
is still worse than that of the essentially optimal strategy given in Section 2
by a factor proportional to log t/VCdim(F). We show that this perfor-
mance gap is real by exhibiting, for every d > 1, a class of functions F with
VCdim(F)=d, a target function f € F, a consistent prediction strategy that
always chooses a hypothesis from F, and for each ¢ a distribution on the
domain of f, such that the probability of a mistake on trial ¢ is £2(log o/a),
where o = t/d (Theorem 4.2).

As mentioned above, it is easy to see that any PAC-style learning algo-
rithm defines a prediction strategy, and any prediction strategy defines a
PAC-style learning algorithm. In the latter case, after processing the given
batch of examples the algorithm outputs the current state of the prediction
strategy as a representation of the hypothesis, so the hypothesis class used
by this algorithm is in general different from the class of target functions.
In Section 5 we exhibit a PAC-style learning algorithm that, for any target
function in F and any distribution on the domain, produces, with probability
at least 1 —4, a hypothesis with error at most ¢ using O((VCdim(F)/¢)
log(1/8)) independent random training examples. (As above, the “error” of
a hypothesis is the probability that it disagrees with the target function on
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a randomly drawn point.) This algorithm first produces a small set of
hypotheses by applying the optimal prediction strategy discussed in
Section 2 to independent batches of examples. Then it uses additional
examples to select a good hypothesis from this set. The sample size bound
for this algorithm is, for some choices of & and 8, better than the
O((VCdim(F)/e)log(1/e)+ (1/¢) log(1/d)) bound given in [ BEHWS89] for
learning algorithms that produce consistent hypotheses in F, which was the
previous best general bound. It is still an open problem to find a general
learning algorithm that meets the Q(VCdim(F)/e)+ (1/¢)log(1/0) lower
bound established in [EHKVE97].

In Section 6 we discuss new research directions and give a number of
open problems.

Overview of Methods Used in Main Result

In the model that we consider, the input to a prediction strategy is in the

form of a sequence of independent random points selected according to an
arbitrary, unknown distribution. Lack of knowledge about the distribution
can make the performance of the strategy difficult to analyze. However,
consider a fixed sequence of points x=(x,, .., x,)€ X’ Whatever the
underlying distribution, the process of independent random selection
induces a uniform distribution on the permutations of this sequence; one is
as likely to draw one permutation of ¥ as another. As in [VC71, Vap82],
we use this observation to obtain performance bounds for arbitrary
distributions from combinatorial arguments about permutations of
sequences. Seidel also uses similar techniques to analyze the expected
performance of algorithms for problems in computational geometry and
other areas of computer science [Sei91].
_ For a deterministic prediction strategy, let the permutation mistake bound
M(r) denote the supremum, over all fe F and all sequences X of ¢ points
in X, of the fraction of permutations of x for which the prediction strategy
makes a mistake predicting the value of f on the last point, given its value
on the previous points. The bound is also defined for randomized strategies
using a natural generalization of this definition (see Section 2). For many
prediction strategies, the permutation mistake bound can be calculated by
a simple counting argument. Using the observation above, it is easy to
show that M(¢)<M(s), so this function provides a convenient upper
bound on our primary performance measure. All our bounds for M(z),
including those for the computationally efficient prediction strategies that
we give for halfspaces and axis-parallel rectangles and general intersection
closed concept classes, are obtained by bounding M(t).

We now describe the principles that the essentially optimal strategy is
based on. Let F be a class of {0, 1}-valued functions on X. Two functions
in F can be considered equivalent with respect to the fixed sequence x if
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their values agree on all the points in ¥; hence ¥ naturally partitions £ into
a sct of at most 2" equivalence classes. VCdim(F) can be defined as the
largest ¢ such that there exists a sequence ¥ =(x,, .., x,) that induces 2’
distinct, nonempty equivalence classes with respect to F.

Suppose that points x,,..,x,_; are labeled with the values of an
unknown f € F, and your task is to predict the value of fon x,. If you are
lucky then there is only one nonempty equivalence class consistent with the
labels of x, ..., x,_, and thus the value of f on x, is determined. However,
if there remains a pair of consistent nonempty equivalence classes (one for
f(x,)=0 and the other for f(x,)=1), then the situation is ambiguous. We
try to resolve this ambiguity in a way that will minimize M(7).

To do this we construct, for the given F and X, a graph G called the
I-inclusion graph [B72, AHW87] (see also [F89]), whose nodes are the
equivalence classes of F induced by ¥ and whose edges represent possible
pairs of equivalence classes that may remain at trial 7 for some permutation
of %. By directing the edges of G, we can represent a deterministic predic-
tion strategy for the permutations of ¥. We show that if there is a way of
directing the edges of every l-inclusion graph derived from F so that the
maximum outdegree of any node is k, then this defines a prediction
strategy with M(r) < k/1.

For example, consider the class of indicator functions of closed intervals
over R; each function in the class is 1 on some closed interval and 0
elsewhere. This function class has VC dimension 2. Now consider the
equivalence classes induced by this function class on any sample of ¢
distinct points x, <x,< --- <Xx,. We illustrate the 1-inclusion graph for
these equivalence classes in Fig. 1. Each equivalence class is represented by
the subset of {x,, .., x,} on which the functions in the equivalence class are
1. Though the degree of the 1-inclusion graph grows in proportion to ¢ (the
degree of the top node is ¢), the outdegree of each node will be at most two
if all edges in the illustrated graph are directed upward. It turns out that
this defines the simple prediction strategy of guessing 0 on x unless x lies
between two points known to have value 1. More general versions of this
strategy are given in Examples 2.1, 2.2, and 2.3.

In Section 2 we define a probabilistic prediction strategy by labeling the
ends of each edge of the 1-inclusion graph with a probability such that the
two probabilities on each edge sum to one. These probabilities represent a
randomized rule for resolving the ambiguous situation represented by that
edge. Using the max-flow/min-cut theorem, we can show that by choosing
the edge probabilities appropriately, this leads to a randomized prediction
strategy with M(7) < maxdens,(F)/1, where maxdens,(F) is the maximum
density (number of edges divided by number of nodes) of any subgraph of
a l-inclusion graph of F for at most ¢ instances. Our key combinatorial
lemma (Lemma 2.4) shows that for any function class F the density of any
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FiG. 1. [l-inclusion graph for a function class of VC dimension 2.

l-inclusion graph derived from F is less than VCdim(F), leading to a
randomized prediction strategy with M(z) < M(t) < VCdim(F)/t. A slightly
modified argument leads to a deterministic prediction strategy for which
M(7) < VCdim(F)/t.

Relation to Other Work

This work can be viewed as an extension of the general line of research
initiated by Valiant in [Val84], aimed at developing a useful theoretical
foundation for the analysis of machine learning algorithms used in artificial
intelligence, robotics, and other areas. The approach here differs from the
approach emphasized in the Valiant PAC model in that we focus on the
predictive performance of learning algorithms, whereas much of the work
in the PAC model has focused on learning representations, that is, on
finding hypotheses that approximate the target function and are represented
in a particular way. The learning problem has often been taken to be one
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of finding a hypothesis from the target class itself. The difficulty with this
approach is that for many seemingly simple target classes it is NP-hard to
learn the target class using hypotheses from the same class [PV88].2 Here
we work with a prediction model in which it is possible to explore issues
of computationally practical learnability without being encumbered by
restrictions on the hypothesis space (other than computational restrictions
requiring the hypotheses to be evaluatable in polynomial time). As a conse-
quence, the predictability model forms a more appropriate basis for
obtaining hardness results for learning problems. If it can be shown that
there are no efficient and effective prediction strategies for a class of func-
tions F, then this implies that F is not polynomially learnable by forming
hypotheses from any polynomially evaluatable hypothesis class. Such
hardness results have been obtained (modulo certain cryptographic
assumptions) for several classes of functions in [KV92, PW90]. The latter
paper introduces a general notion of prediction preserving reducibility
among learning problems, akin to the usual notions of reducibility among
combinatorial problems.

Since the appearance of [A87, L87] and the conference version of this
paper, numerous authors, apart from those mentioned above, have made
further contributions to the study of prediction strategies in the sense that
we have defined them. These include the papers [A90, B90, L8%a, b, LW94,
MT92, MT9%a, b] that focus on the non-probabilistic mistake bound or
equivalence query model from [A87, L87], giving quantitative results on
mistake bounds and comparisons between this and other learning models.
The papers [F95, GKS95, Sch90] focus on what is known as “weak
learning,” in which a learning algorithm or prediction strategy is required
only to do slightly better than random guessing. In [F89] the existence of
space efficient prediction strategies is investigated (see also [H88b, Sch907]).
These are prediction strategies that save only very little information from
previous trials. The papers [GRS93, HSW90, 92] give algorithms with
good expected mistake bounds for a variety of concept classes, including
those derived from binary relations, linear orders, integer lattices,
subspaces of a vector space, general intersection closed classes (see
Example 2.2), and nested differences of such classes. Prediction strategies
like those defined here have also recently been studied from a Bayesian or
“average case” perspective in [HKS94, OH91] (in contrast to the minimax
approach taken here), the former paper building directly on this work in
some of its results. The extent of this work provides further evidence that

2 For example, in [PV88] it is shown that the class of Boolean functions represented by
2-term DNF expressions is not polynomially learnable by any algorithm that must represent
its hypothesis as a 2-term DNF (unless NP = RP); however, this class is polynomially learn-
able if we allow hypotheses represented as 2-CNF expressions.
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the analysis of prediction strategies can make useful contributions to
computational learning theory.

Finally, we have introduced a new combinatorial property of target
classes of finite VC dimension in Lemma 2.4. This result has led to other
combinatorial properties of VC classes [H95], which have applications in
the theory of empirical processes [T92]. The methods used in obtaining
this result are similar to those used in combinatorial geometry to bound
the number of cells, faces, edges, etc., in an arrangement of hyperplanes
(see, e.g., [E87]); hence, this further underscores the unexpectedly close
relationship between geometry and learning (see also [HW87, W88, CF88,
CW89, KPG92, MSW90] for applications of the VC dimension in
geometry.) The general, essentially optimal prediction strategy we give is
the first learning algorithm that directly exploits deeper combinatorial
properties of target classes of finite VC dimension to make its predictions;
others have simply made predictions by forming arbitrary consistent
hypotheses from classes of small VC dimension. This further exploration of
the structure of classes of finite VC dimension and its application to
learning is one of the main contributions of this paper.

General Notation. We denote by X a set called the domain. We assume
X is either finite, countably infinite, or R” for some » > 1, where R denotes
the real numbers. By F we denote a nonempty class of {0, | }-valued
functions on X. We call such a class of functions a concept class.”

For t21, X=(x;,.,x,)eX’, and feF, sam(x, f)=((x,, f(x1)), curs
(x,, f(x,))). We call sam(x, f) the sample of f generated by x, and each pair
(x;, f(x;)) 1s called an example of f. We call an example (x;, a) a positive
example if a=1 and a negative example if a=0. We call a the label of the
example. The sample space of F, denoted S,, is defined by S,=
{sam(x, f): feF,¥e X', 120}

Let P be a probability distribution on X. For any 7> 1, P* denotes the
corresponding product distribution on X‘. For any distribution 7 and
random variable , E,.(y) denotes the expectation of y with respect to the
distribution T.

2. DEFINITIONS AND MAIN RESULTS FOR PREDICTION STRATEGIES

In this section we formally define prediction strategies and how we
measure their performance. We then give examples, followed by upper and
lower bounds on the performance of optimal prediction strategies.

*When X=R", we make some measurability assumptions about F, as described in
[BEHWE&9].
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DEFINITION. A deterministic prediction strategy for F is a mapping
Q:SpxX—{0,1}. For a deterministic prediction strategy, for any feF,
t=1, and (x,, .., x,)e X", let

1 ]f Q(Sam((xls ey Xy l)* f)’ X,) 7éf(x1)
M{, Axy, .. =
0./ %15 s X)) {0 otherwise,
Thus My, (x,, .., x,) indicates whether or not the prediction strategy @
makes a mistake predicting the value of the concept / on x, when given the
value of fon x,,.., x,_,.

We make similar definitions for randomized strategies.

DEFINITION. A randomized prediction strategy for F consists of a
probability space Z with probability distribution P, together with a
mapping Q:Syx X xZ— {0,1}. The randomization is carried out by
drawing a point at random from P_ and giving this point as a parameter
to Q. The mapping Q itself is deterministic. We let Q, denote the deter-
ministic strategy obtained by fixing the point from Z to be r, that is,

0.5, x)=0(s, x, r).

For a randomized strategy, let
My, (X1, o X,) = [ MY, (X1, 0 X,) AP (1),

This is the probability that the randomized strategy makes a mistake, given
a fixed sequence (x, .., x,). We assume that the random choice of r is
independent of the random choices of the examples.

For both deterministic and randomized strategies, let I\A’IQ_f(r) =
sup Ep(Mj, /), where Ehe supremum js taken over all probability distribu-
tions P on X, and let M, (¢) =sup My, (1), where the supremum is taken
over all fe F. This is the measure of predictive performance used in this
paper. It represents the worst case probability of a mistake at the sth trial
(worst case over the choice of f from F and over the choice of the
distribution on X). In the case of randomized strategies, this follows from
the independence of the randomization of the algorithm from the choice of
examples.

The Permutation Mistake Bound

I\A’IQ.F(I) involves a supremum over P, where P is an arbitrary proba-
bility distribution on X; hence it is often difficult to measure. We deal with
this by using a related bound MQ_F(I) in whose definition drawing
sequences according to P’ is replaced by drawing random permutations of
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fixed sequences of X'. We will show that I\A/IQ,F(I)SI\Q/[Q‘F(I). The latter
bound is easier to compute; we can estimate it using counting arguments.

DEFINITION.  Let 77, denote the set of all permutations of {1, .., ¢}. For
a prediction strategy Q, and f e F, let

MQJ(t)—-sup 5 Y M (X1)s o Xon)s

'aer,

where the supremum is taken over all (x,,..x,)eX’ Let MQ 1) =
sup MQ #(#) where the supremum is taken over all f'e F. MQ (1) is called
the permutation mistake bound of Q with respect to class F.

The following lemma can be used to show that M, (1) SI\Q'IQ‘F(t).

Lemma 2.1, Let B be a real number, let I” be a subset of I', and let y be
a random variable defined on X' for some t21. If for all sequences

(X1, - x,) of X',
Z x(x, (1) *oes x,,(,))Sﬂ,

agel’

IFI
then this implies that Ep(x) < f, for any distribution P on X.
Proof. For any permutation ge [,
L" ¥(xi, on x)dP(x, ., X,)= Jx' X(Xo1)s s Xotry) AP (X1, oy X)),
Thus

Epl2) =L‘ XXy s X,) dPY(X Y,y o X,)

Z .[ Xa(1)s v xa(l)) dPr(xl’ seey x,)

agel”

Ifl

Z X a(l)s == xo(r)) dPl(xls sery xt)

cel”

qx’ BdP(x,, s x)=5 1

L" |1

COROLLARY 2.1. For all concept classes F, all prediction strategies Q for
F,and all t>1, My, £(t) <My (1)

_ Proof. The above lemma applied with I"=1", implies that MQ A<
MQ s(t) for every f e F; the result follows from this.
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Note that this corollary would still hold if MQ_ (1) were defined with
respect to any subset I" of I',.

It can still be quite difficult to calculate the permutation mistake bound
in many cases. However, certain properties of the concept class F and the
prediction strategy @ can be helpful in obtaining upper bounds on this
quantity, which often turn out to be tight.

DEFINITION. Given a sample 5= (s, ..., 5,) € Sf, let S= {s,, .., 5,}. Let
S* denote the set of all finite sequences of elements of S. We call a set
B < S a Q-sufficient subsample of s if for every sample s’ € $* that contains
B, after seeing s', Q predicts correctly on any further example from S, ie.,
O(s’, x)=a for all (x, a)e S. In other words, B is a Q-sufficient subsample
of s if, after any sequence of examples from s that contains all the examples
in B (in any order and with any number of repetitions) has been seen, the
hypothesis generated by Q is consistent with all examples in s. Let U
denote the set of all elements of s that occur only once in s. If there exist
any (-sufficient subsamples of s then the Q-kernel of s is the intersection
of U with the intersection of all Q-sufficient subsamples of s. Otherwise, the
Q-kernel is undefined.

LEMMA 2.2. Let Q be a deterministic prediction strategy, let f be a func-
tion from X into {0, 1}, and let (x,, .., x,)e X" Let s=sam((x, .., x,), f)
and let K be the Q-kernel of s. Then

1 K]
F Z M’ny(xa(l,, ery x‘,(,])S—‘t—.

faely

Proof. If x,,,¢ K then there is a Q-sufficient subsample of s, call it B,
such that B< {x,, ... X,,_1,}. In this case the prediction of Q@ on x,,
will be correct, since B is a Q-sufficient subsample of s. Thus ¢ cannot
make a mistake unless x,,, € K. This occurs only in a fraction |K]|/t of the
permutations, since each point in the kernel occurs only once in s. ||

Examples: Rectangles, General Intersection Closed Classes, Unions of
Intervals, and Halfspaces

The following examples illustrate how these ideas may be applied.

ExaMmpLE 2.1. Let the domain X'=R" and let the concept class F,
consist of indicator functions of axis-parallel rectangular regions in R”. The
positive examples of each concept in F, form a single closed and bounded
rectangular region. The boundaries are hyperplanes of dimension #— 1
which are parallel to the coordinate axes.
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We consider the following prediction strategy for this concept class. As
long as no positive examples have been seen, the prediction strategy
predicts 0 for each new point. When positive examples have been seen,
the prediction strategy keeps track of the smallest axis-parallel closed
rectangular region that contains all of the positive examples seen so far. It
predicts 1 if the new point is contained in this region and 0 otherwise. The
prediction strategy for indicator functions of intervals described in the
introduction is a special case of this general strategy for n=1. Call this
general strategy Q.

It can be shown that for any sample s of any function in the concept
class F,, the Q-kernel of s contains at most 2n examples. We will
demonstrate this for n=2; the argument directly generalizes to higher
dimensions. Consider any sequence s of points of R? labeled according to
some target rectangle in F,. Since the prediction strategy Q always predicts
using the hypothesis that is the smallest closed axis-parallel rectangle
containing the positive examples seen so far, @ will never make a mistake
on a negative example. Thus when s has no positive points, the O -kernel
of 5 is empty.

Assume that the sequence s contains at least one positive example. Let
R denote the smallest closed axis-parallel rectangle containing the positive
examples of the entire sequence s. Each edge of R will contain at least one
point of 5. Pick one such point from each edge of R to form a set B of size
at most 4. Assume that Q is given the examples from s in any order with
any number of repetitions. Once Q has seen all the examples in B, Q’s
hypothesis will be the indicator function of R, and this hypothesis will not
change as further points from s are seen, and hence subsequent predictions
of Q will be correct. Hence every set B obtained in this manner is a
Q-sufficient subsample of s.

The Q-kernel K of s is contained in each Q-sufficient subsample of s.
Since there exists at least one Q-sufficient subsample B of s with |B| <4,
K| < 4. Clearly |K| =4 only if there is only one positive point from s on
each edge of R with each such point occurring only once in s, and no
positive point is on two edges. Otherwise |K| <4. These resuits easily
generalize to » dimensions, for n>2, giving K| <2n. It follows from
Corollary 2.1 and Lemma22 that My (1) <Mg (1) <2n/t; ie, the
probability that O makes a mistake in predicting the value of the function
/f on the rth random example is at most 2n/t for any target function fe F,
and any distribution on R".

Example 2.1 can be generalized quite a bit. The details are given in
[HSW90], so we just sketch them briefly here.

ExXAMPLE 2.2. Let F be a concept class on X. For any G < F, we define
the conjunction of the concepts in G, denoted by () G, to be the concept
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on X that is 1 at just those points at which every concept in G is 1. For
any set S< X, define the closure of S, denoted CLOS(S), by CLOS(S)=
N{feF: f(x)=1 for all xeS}. For simplicity we define () =0 (the
zero function). Thus for non-empty S, CLOS(S)=0 if and only if there is
no f e F such that f(x)=1 for all xe §. We say that F is intersection closed
if CLOS(S)e€F for all finite sets S< X with CLOS(S)#0.

Clearly F,, as defined above, is intersection closed for each n. There are
also many other instances of intersection closed concept classes in the
learning literature. For example, the class of s-CNF Boolean functions on
n variables studied in [Val84, Val85, KLPV87] and its generalizations
studied in [HB88a] are also intersection closed, as are various concept
classes based on lattices and families of linear subspaces [HSW92, Shv881.
In the case where the domain X is finite, Natarajan has established an
equivalence between intersection closed concept classes and those concept
classes that can be PAC learned with no error on negative examples [ N87]
(see also [B88, Shv8&1).

For intersection closed concept classes, a natural prediction strategy is to
always predict using the hypothesis CLOS(S), where S is the set of (points
of ) positive training examples seen so far. This is the (unique) maximally
specific hypothesis in F that is consistent with the training examples. This
prediction strategy is called the closure algorithm. The prediction strategy
Q above for F, is an instance of the closure algorithm.

If T< S and CLOS(T)= CLOS(S), then we say that T is a spanning set
of S. This definition naturally extends to samples: if s is a sample of some
target function in an intersection closed concept class F, S is the set of
positive examples of s, and B< S is a spanning set of S (ignoring the
labels), then we say that B is a spanning set of s. It is clear that if g is the
closure algorithm, then B is a spanning set of s if and only if B is a
QO -sufficient subsample of s. Hence, if all the points in s are distinct, the
Q-kernel of s is the intersection of all the spanning sets of s.

In our rectangles example, we obtained a good bound on the perfor-
mance of the closure algorithm by showing that every sample has a small
spanning set, in particular a spanning set of size at most 2xn. This is not
possible for all intersection closed concept classes. For example, if X =R?,
F is the set of all indicator functions for convex subsets of X, and S is a
finite subset of X, then 7<= S is a spanning set of S if and only if 7 contains
all the extremal points of S. Hence, even for arbitrarily large S, the smallest
spanning set of S can be as large as the set S itself. However, as we will
show, if F is intersection closed and has finite VC dimension, this cannot
happen.

DerFiNITION.  Let X be a non-empty set and let F be a non-empty class
of {0, 1}-valued functions on X. For any S< X, I71.(S) denotes the set of
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all 4 < S such that there exists a function fe Fthatis | at all xe 4 and 0
at all xeS—A. The Vapnik-Chervonenkis dimension of F, denoted
VCdim(F), is

sup{|S|: SS X and I .(S)=2%}.

If Fis empty then we say that VCdim(F)= — 1.

It is easily verified that when F, is the set of indicator functions for
axis-parallel rectangles in R”, then VCdim(F,)=2n (see [WDS81] or
[BEHWS89]). Hence for functions in F,, every sample s has a spanning set
of size at most VCdim(F,). This holds in general for intersection closed

classes.

LemMma 2.3. [N87, B88]. If F is a (non-empty) intersection closed
concept class on X and S< X is a finite set with CLOS(S)#0, then any
minimal spanning set of S has size at most VCdim(F).

Proof. Let T be a minimal spanning set of S. Then for every point
xeT, there is a concept f.e F with f(x)=0 but f(y)=1 for all
yeT—{x} (otherwise T is not minimal). Since CLOS(S)#0, there is
also a concept feF such that f(x)=1 for all xe7. By taking inter-
sections of these concepts, we can construct, for any 4 = 7, a concept in
F that is 1 on points in 4 and 0 on points in T— 4. It follows that
VCdim(F)= |T|. 1

As in the rectangles example, using Corollary 2.1 and Lemma 2.2 we
obtain the following result.

THEOREM 2.1 [HSW90]. If F is intersection closed and Q is the closure
algorithm, then My, ;(1) < Mg (1) < VCdim(F)/1.

Below we will construct a prediction strategy (usually not efficiently
implementable) that obtains this performance bound on any concept class,
whether or not it is intersection closed. However, before doing so, we will
give two more examples of permutation mistake bounds for eflicient predic-
tion strategies. In the first example the concepts are defined in terms of
unions.

ExampLE 2.3. Let the domain X be the real line and let F, be the
concept class containing the indicator function of each subset of X
consisting of n disjoint closed intervals. Consider the following prediction
strategy Q: if any of the previously seen points does not exceed the new
point on which a prediction is to be made, make the prediction that
matches the label of the greatest such point; otherwise, predict 0.
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To describe the kernel, we order examples in increasing order according
to where they fall on the real line. It is easy to see that for any sample s
of any function f € F,, the Q-kernel of s contains the least example in s if
and only if it is a positive example. In addition, the kernel also contains
exactly those points that are labeled differently from their immediate prede-
cessors. Clearly, for each interval of f, there are at most two points in the
Q-kernel of s. It follows that the size of the Q-kernel is always at most 2n.
lgsing Corollary 2.1 and Lemma 22 we conclude that I\A/IQV (1)<
M, (1) <2n/t. It is easy to see that VCdim(F,)=2n.

In the last example we give a permutation mistake bound for a
randomized prediction strategy. As in the previous example, the concept
class is not intersection closed.

ExaMPLE 24. Let X=R" and let F, be the set of indicator functions of
closed halfspaces of R” It is well known that VCdim(F,)=n+1 [P84].
Given any finite sample s of a target function f in this class, there exists a
hyperplane strictly separating the positive examples in s from the negative
examples. Such a separating hyperplane can be found in polynomial
time using linear programming (with the bit complexity model, using
Karmarkar’s algorithm [K84]). This gives a simple polynomial prediction
strategy: given a sample se S, and xeR”", solve a linear programming
problem to obtain a separating hyperplane, and predict 1 if x lies in the
halfspace determined by the hyperplane that contains the positive points of
s, 0 otherwise. The exact strategy depends on how the linear-programming
problem is constructed.

Not all strategies using linear programming to find a separating hyper-
plane have a useful permutation mistake bound. There exist such strategies
for which the permutation mistake bound is 1, which is a trivial bound on
M. It turns out that the problem is due primarily to the non-uniqueness of
the optimal solution. Even in this case, a different analysis, not using the
permutation mistake bound (see Theorem 4.1 below), gives a reasonable
upper bound on I\A'IQ‘F(t): for any prediction strategy Q whose }lypothesis
is always a halfspace consistent with all previous examples M (1) <
(2(n+2)/t)log 2(4et/n+ 1), for all t>n+1. With some care in the
construction of the linear-programming algorithm, one can obtain a better
bound than this by making use of the permutation mistake bound.

By randomizing the choice of the objective function of a suitable linear-
programming problem one can arrange that with high probability the
optimal solution is uniquely determined by a set of tight constraints whose
size roughly equals the dimension of the problem. For an appropriately
chosen linear-programming problem, this yields a prediction strategy LP
with a permutation mistake bound of (n+ 4)/z, implying that M, . MOES
(n+4)/t. Note that this bound on M .p.r(2) 1s essentially optimal.
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As in Example 2.1, the permutation mistake bound depends on the
number of tight constraints (due to sample points) at an extremal
consistent hypothesis. The extremal hypothesis in this case is an optimal
solution to a linear programming problem. As in the case of Example 2.1,
it can be shown that we do not need to count redundant constraints in
calculating the permutation mistake bound.

Prediction Strategies Based on the 1-Inclusion Graph

We present a randomized and a deterministic prediction strategy which
use the 1-inclusion graph. Both are essentially optimal but the randomized
strategy is slightly better. We first develop the background for the
strategies.

DEerFINITION.  Given any sequence X= (X, .., x,)€ X’ and any concept
class F over X, we construct a graph that we call the /-inclusion graph for
F with respect to ¥, denoted G,.(x) [B72, AHW87].* The nodes of G ,(xX)
are just the elements of I7,.({x,, .., x,}), as defined in conjunction with the
VC dimension in Example 2.2 above. Let v and w be any two such nodes.
They are connected with an edge if and only if the sets v and w differ by
exactly one element x of ¥ and x appears only once in x. Each edge is
labeled with the corresponding x.

Nodes of a 1-inclusion graph can have arbitrarily high degree, even for
concept classes of Vapnik-Chervonenkis dimension 1. (Figure 1 gives an
example for a class of VC dimension 2.) However, it turns out that the
edges of any l-inclusion graph for a concept class of Vapnik-Chervonenkis
dimension 4 can be directed so that the outdegree of every node is at most
d. This result, and a refinement of it that applies to randomized strategies,
are the basis for the l-inclusion graph prediction strategies. We develop
these results in the next sequence of lemmas.

DerFNITION.  The density of a graph G, denoted dens(G), is the number
of its edges divided by the number of its nodes.

LEMMA 24. Let F be a (nonempty) concept class and let G be any
I-inclusion graph for F. Then dens(G) < VCdim(F) if VCdim(F) = 1, and if
VCdim(F) =0 then dens(G) =0 as well.

Proof. Let d=VCdim(F). The case d=0 is trivial. We assume that
d> 0. Assume that ¥=(x,, .., x,)e X' and G = G (X). The proof proceeds
by induction on f. When ¢ is zero, G contains one node, and the result

4 Qur definition of the 1-inclusion graph reduces to the one given in these references when
all the points in % are distinct.
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follows trivially for all d. For the induction step, we will prove the result
for t >0, assuming that the result holds for z — 1. There are two cases.

Case 1. x,=x; for some 1<i<t Let H=Gg(x,, ., x,_,). Since x,
already appears in {x,, .., x,_;}, the node set of H is the same as that of
G, and the edge set of G is the same as the edge set of H, except that all
edges labeled with x, are missing. Hence dens(G)<dens(H)<d by
assumption.

Case 2. x,#x;for all 1 <i<t We construct a mapping #n of the nodes
of G onto the nodes of another t-inclusion graph H. Let y= (x4, .., x,_;).
Then H = G (7). Note that nodes of G are subsets of {x,, .., x,} and nodes
of H are subsets of {x,, .., x,_}. The mapping n from nodes of G to nodes
of H is defined by n(v)=v— {x,}. Thus two nodes of G map to the same
node of H if they differ only in whether or not they contain x,. Note that
either one or two nodes of G map to each node of H. Now let W be the
set of all nodes of H whose inverse image under n contains two nodes of
G. If W is empty, then the number of nodes of G equals the number of
nodes of H and for every edge of G there exists a distinct corresponding
edge in H. Thus in this case dens(G)<dens(H)<d by the induction
hypothesis, and we are done.

Otherwise, let F’ be the concept class over X whose concepts are the
indicator functions of the subsets of X which are the elements of W. One
can show that the Vapnik—Chervonenkis dimension of F’ is at most d— 1
(if not, then there exists an S< {x, .., x,_,} with |S|=4d such that
.(Su{x,})=2"""1 contradicting the fact that VCdim(F)=d.) We
consider a third 1-inclusion graph, J= G (7). The nodes of J are just the
elements of W. Let N;, N, and N, denote the number of nodes of G, H,
and J, respectively. Let E;, E,, and E; denote the number of edges of G,
H, and J, respectively. The number of nodes of G is just the number of
nodes of H plus the number of nodes of H to which two nodes of G map
under n; ie., No=Ng,+ N,. To count the edges of G, first note that there
will be one edge in G for each element of W, since any two nodes which
map to the same node of H will be joined by an edge. Call these edges
edges of the first type. The number of edges in G of the first type will equal
N,. For each other edge of G, there must be distinct nodes # and v of H
such that the edge joins a node in 77 '({u}) to a node of n~'({v}). Such
edges can only occur when u and v are connected by an edge in H. There
can be two such edges for a given u# and v only if ¥ and v are both in W,
and then u and v will also be connected by an edge in J. Thus the number
of edges in G of the second type will be bounded by the number of edges
of H plus the number of edges of J. Thus we have E; < E,+ E,+ N,. By
the induction hypothesis, E,, < dN,. Also, E,<(d— 1) N,; this inequality

643/115/2-8
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follows from the induction hypothesis for d > 1. For d= 1, it follows from
the fact that in that case £,=0. Thus

E +E,+N, dN,+(d-1)N,+N,

d
Ny+ N, Ny+N, I

dens(G) <

An alternate proof of the above lemma is given in [H95]. It should be
noted that while the inequality in the above result is strict, it is still tight

{1,2} {1,3}

(%]
(a) 1-inclusion Graph

(b) Corresponding Network

Fic. 2. Constructing a network from a l-inclusion graph.
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in the sense that there are cases where dens(G) gets arbitrarily close to
VCdim(F) for all VC dimensions greater than zero. (For example, for VC
dimension d, consider the class over some finite domain that consists of all
functions that are 1 on exactly 4 points, and consider the 1-inclusion graph
with respect to all but 1 of the points in the domain. If the domain has size
at least 24 then this class has VC dimension d, and as the domain size
grows, it is easy to see that the density of the described 1-inclusion graph
grows arbitrarily close to d.)

We now devise a method for assigning probabilities to the ends of each
edge of a l-inclusion graph. The probabilities assigned to the two ends of
an edge sum to one and these probabilities are used to determine a
randomized prediction. Let us fix a concept class F of VC-dimension 4> 0
and a sequence of points Xx=(x,, .., x,)€ X' (If d=0 then the class has
only one concept, and a trivial prediction algorithm suffices.) Consider the
I-inclusion graph G (x) for the concept class F on the sequence of points
X. A probability will be associated with each end of each edge of this graph.
We determine these probabilities by solving an associated network-flow
problem. The following densities (number of edges over number of nodes)
will be used in defining the capacities used in the network.

DerFmvITION. For any node v of Gg(x), let MDg(x) denote the
maximum density of any subgraph of G.(x).

For example, the density of the l-inclusion graph of Fig. 2a is 8/7,
whereas its maximum density is 7/6.

We construct a network as follows: There is a single source node and a
single sink. The flow from the source to the sink passes through two
intermediate layers of nodes (see Fig. 2b).

The first intermediate layer has one node corresponding to every edge in
the 1-inclusion graph, and the second layer has one node corresponding to
every node in the 1-inclusion graph. The network edges and their capacities
are as follows: There is a network edge directed from the source to each
node of the first intermediate layer. Each such edge has capacity 1. Each
network node n, of the first layer corresponds to some edge e of the
I-inclusion graph; this edge e joins two nodes, v, and v,, of the l-inclusion
graph. These nodes, in turn, correspond to two nodes #n, and #n; in the
second intermediate network layer. Edges are directed out from network
node n, to nodes n, and n,; this construction is carried out for each node
in the first intermediate layer. Each of the edges joining the first to the
second layer has infinite capacity (or, equivalently for our purposes, any
capacity greater than or equal to 1). Finally, there is a network edge
directed from each node of the second intermediate layer to the sink with
capacity MD.(x). Denote the described network by N(x}). We also define



268 HAUSSLER, LITTLESTONE, AND WARMUTH

a slightly modified network 7,.(x) in which all capacities are integral: /(x)
equals N, (X) except that the capacities of the edges from the second
intermediate layer to the sink are [ M D (X)].

LEMMA 2.5. For any network Ng(X) its maximum flow is the number of
edges in Gp(x). For any network I,(X) there is an integral flow equal to the
number of edges in G (X).

Proof. The second part clearly follows from the first part: any flow of
Np(x) is also a flow of /.(x) and since all capacities of /,(X) are integral
there exists a maximum flow of 7,.(X) that is integral [W86]. For the first
part, let m be the number of edges in G (x). Since in N (x) there are m
edges of capacity | from the source, the maximum flow is at most m. To
show that it is at least m, we use the fact that the maximum flow equals
the capacity of the minimum cut (set of edges) separating all paths from
the source to the sink. Fix attention on a minimum cut. Since the capacity
of the minimum cut is finite, it does not contain any network edge between
the first and second intermediate layers. If the minimum cut does not
contain any edges from the second layer to the sink then its capacity must
be m since it must consist of all edges connected to the source. In this case
we are done. Otherwise, consider those edges from the second layer to the
sink that are cut. Let /# denote the set of network nodes in the second
intermediate layer that are incident to these edges, and let W be the set of
corresponding 1-inclusion graph nodes. We will now find an upper bound
on the number of network edges from the source to the first intermediate
layer that are not cut. Consider any such edge that is not cut. This edge
terminates at some network node e that corresponds to a 1l-inclusion graph
edge. We claim that both endpoints of this 1-inclusion graph edge are in W.
Otherwise, there will be a network edge from e to a network node not in
W, and there will be an uncut path from the source to the sink passing
through that edge. Thus ¢ corresponds to an edge in the subgraph G’ of the
1-inclusion graph induced by W. It follows that the number of uncut edges
from the source to the first intermediate layer is bounded by the number
of edges in G’ which equals D’ |W|, where D’ is the density of the subgraph
G'. The number of cut edges from the source is therefore at least
m— D' |W]|. Since each of these edges has capacity 1, and since each cut
edge from a node of W to the sink has capacity MD.(x)> D’, the total
capacity of the minimum cut is at least m. ||

Remark. 1t is easy to see that MDg(x) is the minimum capacity for the
edges connecting the second intermediate layer to the sink that allows the
maximum flow of the network N.(x) be equal to the number of edges of
Gp(%x). If H is a subgraph of G.(x) of maximum density, then since each
edge of H is responsible for one unit of flow, the total capacity of all edges
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in the network connecting the nodes corresponding to the vertices of H to
* the sink must be at least MD.(x) |H|. We will use this property later to
search for the value of MDg(x).

We next describe the randomized prediction strategy. Assume that we
have some fixed ordering on the elements of X, and let the sequence X,
denote the set {x;:1<i<t} in sorted order. Use any standard deter-
ministic network-flow algorithm to find a maximum flow for the network
Ng(X,). (The produced maximum flow does not depend on the order of the
points in x.) Denote the sets of nodes and edges of the 1l-inclusion graph
by V and E, respectively. Construct a map p: V' x E- [0, 1] as follows:
For each edge ¢ € F with endpoints v, and v,, there are network nodes ¢,
#,, and ©, corresponding to e, v,, and »,, respectively, and there are
network edges joining the node & to #, and #,. Let ¥, and u, denote the
flows on the edges to #, and #,, respectively. Since the flow into € is 1,
u +u,=1. We let p(v,,e)=u, and p(v,, e)=u,. For every edge e, for
every node v not incident with e, we let p(v, ¢)=0. Note that for any
l-inclusion graph node v, the flow into the corresponding network node is
3. & P(v, e). Since the flow out of the network node v in N(X,) is at most
MD,(x), we have for every ve V that

> plv,e) <MD (%), (1)

ec E

The randomized strategy uses the constructed flow of N (X,) to make
randomized predictions. Each node of the 1-inclusion graph is an element
of IT.({xy, .., x,}). The labeling of x,, .., x, _, in the sample can be consis-
tent with at most two of the nodes, one for each possible labeling of x,.
There must be at least one consistent node since the sample is consistent
with some concept in F. Also, if x,=x;, for 1< j<1, then there is always
exactly one consistent node. In the case when there is one consistent node
v, the strategy makes whichever prediction is consistent with that node. If
there are two consistent nodes, v, and v,, then they differ only for x,. Thus
there must be an edge e joining the nodes. The strategy chooses node v,
with probability p(v,, e) and node v, with probability p(v,, ¢). As noted
earlier, these probabilities sum to 1. (In terms of our formal definition of
randomized strategy, one way to obtain this randomization is by letting
Z=1[0,1] with the uniform distribution. The algorithm receives a
parameter r chosen uniformly at random from Z and then chooses node v,
if < p(v,, e).) It then makes a prediction consistent with the chosen node.

For the deterministic prediction strategy a maximum integral flow
[W86] for the network 7I-(x,) is constructed. The edges connecting the
source to the first layer all have flow one. Since the flow is integral the
mapping p defined above has the following property: for each edge ec E
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with endpoints v, and v,, one of {p(v,, e), p(v,, e)} is one and the other
zero. So the prediction based on this mapping is deterministic. Also, since
the flow out of the network node v in I.(x,) is at most [ MD.(x)], we have
for every ve I that

Y plv,e)<[MDg(%)] (2)

eecE

If we direct the edges of the l-inclusion graph so that each edge e is
directed towards its endpoint v for which p(v, e)=0, then we arrive at
another description of the deterministic strategy. When a prediction is to be
made and there are two consistent nodes, the strategy examines the edge
joining the nodes, and makes a prediction consistent with the node towards
which that edge is directed. Using this method of directing the edges, the
following theorem follows immediately from inequality (1) and Lemma 2.4:

THEOREM 2.2. For any concept class F on X and any % over X, the edges
of the I-inclusion graph Gp(X) can be directed so that the out-degree of
every node is at most [ MD ¢(x) < VCdim(F).

An alternate way of proving this result can be obtained using results in
[AT92]. The above prediction strategies lead to the bounds given below in
Theorem 2.3, which makes use of the following definition.

DerFNITION.  For any > 1 and concept class F on X, let maxdens (F) be
the maximum?® of MD (%) over all e X",

THEOREM 2.3. (i} For any concept class F there exists a randomized
prediction strategy Q such that for any fe F and any xe X'

MD (%)

1
F Z MIQ-/’(xa(l)a weos JCa(r))s p

foel

(i.e., for any sequence of points X =(x, .., x,) and any target concept f € F,
the expected fraction of all permutations of X for which the strategy Q makes
a mistake in predicting the value of f on the last point, given the value of f
on the previous points, is at most MDF()E)/I), and hence the randomized
strategy Q has permutation mistake bound I\A’IQ. r(2) (which upper bounds
My, x(t)) of at most maxdens(F)/t <VCdim(F)/t. (The strict inequality
fails to hold in the trivial case that VCdim(F)=0.)

S Note that the maximum is well defined since there are only finitely many distinct values
that MD.(x) can take for a fixed 1.
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(ii) For any concept class F there exists a deterministic prediction
strategy Q such that for any f e F and any Xxe X',

[MDy(X)]

1
7 Y My (Xoq1ys o Xon) < p

‘foel;
and® M, (1) < My, (1) <[ maxdens,(F) )/t < VCdim(F)/1.

Proof. Let x=(x,, .., x,)e X" and let V and E be the sets of nodes and
edges of the l-inclusion graph G, (X). Suppose that node v of the
l-inclusion graph corresponds to the equivalence class containing the
target function f. Suppose that the randomized prediction strategy has seen
sam({x, .., x,_;), f) and a prediction is desired for x,. Then if there is
an edge e labeled x, that is incident with v then the probability the
randomized algorithm makes a mistake is p(v, e); otherwise, the probability
of a mistake is 0. Thus M}, (x,, .., x,) < p(v, e), and hence

1 e v, e
0 ag; M’Q,f(xa(l)’ e X)) séE—tp(-'_)-
By inequality (1) and the definition of MD (%), the above is upper
bounded by MD(x)/t. Thus MQJ(:) € MD(x)/t < maxdens,(F)/t.
Finally, by application of Lemma 2.4 to the induced subgraphs of the
l-inclusion graph Gp(x), it follows that maxdens,(F)< VCdim(F),
whenever VCdim(F)>0. This completes the proof of part (i) for the
randomized strategy.

The proof of the bounds for the deterministic strategy is essentially the
same except that inequality (2) is used in place of (1). |

Efficiency of the 1-Inclusion Graph Prediction Strategy

The deterministic and randomized 1-inclusion graph prediction strategies
may not yield efficient algorithms. However, if the VC dimension of the
concept class is small, they may be computationally feasible.

DErFINITION. A concept class F is polynomially recognizable if there
exists a polynomial algorithm that, given a sample, decides whether there
is a concept in F consistent with the sample.

THEOREM 2.4. If F is has finite VC dimension and is polynomially
recognizable then the I-inclusion graph can be created and applied to make
deterministic or randomized predictions in time polynomial in the size of the
sample.

© The upper bound previously obtained [HLW90] was 2 VCdim(F)/1.
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Proof Sketch. A theorem of Sauer [Sau72] shows that for any
(xy, - x,)€ X', the cardinality of IT.{x, .., x,} is O(:Y<*™}). Hence by
Lemma 2.4 the size (number of edges plus number of vertices) of the
l-inclusion graph G,(x) is O(VCdim(F) (Y<4m)) If VCdim(F) is finite
and one can tell in polynomial time whether or not there is any function
in F that is consistent with a given sequence of examples, then Lemma 3.2.2
of [BEHWS89] shows how the sets in I7.(x) can be listed in polynomial
time. Given this list, it is easy to construct G,(X) in polynomial time. To
construct N,.(%,) we need to search’ for the value MD.(%). This can be
done in polynomial time using a standard network flow algorithm [W86]
since MD,(X) can have only polynomially many different values and
MD (%) is the minimum capacity of the edges connecting the second layer
to the sink that allows the maximum flow of N,(x,) to be equal to the
number of edges of G (x). Thus maximum flows for N.(%,) and I-(%,) can
be constructed in polynomial time. It is easy to predict based on these
maximum flows. [}

Cumulative Mistake Bounds

A more general way to analyze prediction strategies is to consider the
expected total number of mistakes in a sequence of trials from some time
¢’ up to time ¢4, instead of just the probability of mistake at time 7. Weighted
averages could also be considered. The total number of mistakes beginning
from the first example has been studied extensively in the model where the
points in X are selected by an adversary, rather than being drawn
independently at random [L87, B90, F89, GRS93, HSW90, 92, 1.89a, b,
MT92, MT94a, b . However, for continuous domains, even for simple con-
cept classes such as indicator functions for intervals on the real line, the
best prediction strategies will make a mistake on every trial for some
sequences of points. Thus it is also useful to consider the model in which
the points are drawn independently at random from some distribution on
X, and the expected total number of mistakes is measured. Here again it
may be the case that this is infinite, and hence we may wish to study the
expected number of mistakes made during the first ¢ trials as a function of
t. Such measures are studied in [HSW90]. We will call them cumulative
mistake bounds.

Since our upper bounds on the probability of mistake at trial ¢ hold for
any distribution on the domain X, using the linearity of the expectation we
can simply sum these bounds to obtain upper bounds on the expected total
number of mistakes.

" If one is willing to accept the weaker bounds expressed in terms of the VC dimension that
are given in Theorem 2.3, then one can avoid this search by setting the capacities of the edges
incident to the sink to VCdim(F).
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COROLLARY 2.2. Assume | <t' <t For any concept class F there exists
a prediction strategy Q such that for any target function f in F and any
distribution on the domain of f, if t examples of f are drawn independently
at random and given to Q, then the expected total number of mistakes in
prediction on examples indexed ¢’ to t Iis at most

VCdlm(F)

DA

In particular, if t’ = 1 then the expected total number of mistakes is less than
(In(2)+ 1) VCAim(F), and if t' =[t/271+ | then the expected total number of
mistakes is less than In(2) VCdim(F).

Proof. This follows directly from Theorem 2.3 and well known bounds
on partial sums of the harmonic series. |}

3. Lower BounDs

We now show that the bounds on MQ_ (1) for both the deterministic and
randomized algorithms are tight to within a constant factor.

DEFINITION. A (non-empty) concept class F<2¥ is trivial if F contains
exactly one concept, or if F consists of two functions f, g: X — {0, 1} such
that f=1—g

THEOREM 3.1. Assume that F is non-trivial and Q is any prediction
strategy. (Q can be deterministic or randomized.)

(i) If VCAim(F) is infinite then My (1) =1 for all 1> 1.

(1) If VCAdim(F) is finite then for all t>VCdim(F), MQ‘F(I)>
max(1, VCdim(F) — 1)/2et, where e is the base of the natural logarithm.

Proof. We use the technique from [EHKV89]. Here we give only
the proof of part (i1); part (i) is similar. We first consider the case
VCdim(F) = 2. Let k = VCdim(F)—1 and fix 1>k Assume X, =
{¥0s < Y&} ©X is shattered by F. Let P be the distribution on X defined
by
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and
P(x)=0, xeX—X,.

Letp=P{(x, .., x,)eX§:x,#x,;, 1 <i<t}. Notethatp>= P'{(x,,.., x,)€
Xi:x #ygand x, #x;, | <i<t}=(k/t)(1=1/t) "' = k/et.

Let Fyc F be a set consisting of 2'** functions such that 7, (X,)=
M,:(X,)=2" and let T be the uniform distribution on F,,. Let Mj(%, f) =
M, (x) for all feF, and xe X{. Given any sample s=((x,,a,), .,
(x,_,,a,_,))eSg and x,eX, such that x,#x, 1<i<¢ half of the
functions in F, that are consistent with s are 1 at x, and the other half
are 0 at x,. Thus for any fixed ¥=(x,,.., x,)e X{ such that x,#x,,
I<i<t, Ex(My(X,-))=1/2 for any prediction strategy Q. This implies
that Ep, r(My) 2> p/2 2 k/2et. Hence there exists foeF, such that
Ep(Ml(X, fo)) = k/2et.

For VCdim(F)>=2, the above argument shows that for all >
VCdim(F) — 1 there exists f'€ F such that E,(Mj, () > (VCdim(F) —1)/2er.
If VCdim(F)<2, then we can use the fact that F is non-trivial to find
concepts f, and £, in F and points a and b in X such that a is in f, but not
in f, and b is either both in /| and in f, or neither in f; nor in f,. We then
set P(a)=1/t and P(b)=1—1/t. The remainder of the proof is similar to
the above argument and shows that E,(My, ) > 1/2et for either f = f, or

=61

The above lower bound on the probability of a mistake at the rth trial
is obtained by constructing for each ¢ a distribution P(¢) for which we show
that Ep (Mg, ;) exceeds the stated lower bound for some f € F. Because
the distribution is changed with 1, we do not obtain a lower bound for the
expected total number of mistakes made in a sequence of trials by adding
the lower bounds for the separate trials. For certain concept classes, we
are able to derive lower bounds by a different approach, using a single
distribution on the domain for all 7, thus yielding lower bounds on the
expected total number of mistakes made in a sequence of trials as well as
on the probability of a mistake in a single trial.

We first consider the domain X,=[0,1]x {1, .., d} and the concept
class G,= {f;: e [0, 1)}, where f,,, _,, denotes the function from X, to
{0, 1} defined by fi,, _,,({x, j>)=1if and only if x <g,. We will refer to
concept class G, as the class of unions of d initial segments.

In the next lower bound, as in the proof of the previous lower bound, we
will bound how well any prediction strategy can perform on a random
concept f € G, drawn w.r.t. some distribution U on G,. As in that proof, let
M, be a new random variable on the domain X |, x G, such that

MY (X ), o X0y ) =ML (X), oo X,).
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The uniform distribution U on G, picks each g¢; independently and
uniformly in the interval [0, 1)x {;}. The uniform distribution P on X,
chooses with probability 1/d a particular j and then a point is drawn
uniformly in the interval [0, 1]x {j}. Note that in the following lower
bound the distribution P on X, does not change with ¢ as was the case in
Theorem 3.1.

THEOREM 3.2. Let G, be the concept class of d initial segments on the
domain X 4. For all d > 1, for the uniform distributions U on G, and P on X,
for any prediction strategy Q for G, and for any t > 1,

N d dZ 1 t+1
Moy D)2 Enn oMbz s~ ((1-1)7 1),
0.6/1)Z Epixv(Mp) 2t+2t(t+1)((1 d) )

_ Proof. The first inequality follows directly from the definition of
My, ;,(t). For the second inequality observe that

E,,.xU(M’Q)=f M, dP x U

Xf,EGd
=LI (IG M, oo x,,f)dU(f)) dP{x,, 0 x,),  (3)

by Fubini’s Theorem. Temporarily fixing some x,, ..., x,, we next determine
a lower bound on deM’Q(x,, ws X, £YAU(S). Assume that x,={p, k).
Let A=max{x:x<p and {(x,kde{x,,..x,_,}u{<0,k>}} and let
p=min{x:x 2 p and {(x, k> € {x,.,x,_} v {{L,k)}} Let L =
{fiar..an€GaiA<q,<p}andlet R={f, ., €Gs p<q,<p} Because
the prediction of the strategy depends only on the sample it has seen (and
possibly also on independent randomization), we have M, (x,, .., x,, )=
1 —Mp(xy, .., x,, g) whenever fe€ L and g€ R satisfy f(<{x, j>)= g({x, j>)
for all {x, j) € G, such that j# k. (This holds since all of the labels that the
prediction strategy has seen before its prediction match for the two
concepts f and g, but the correct prediction for x, will be different in the
two cases.) Thus if we let 7(xq, .., x,) =min{p — 4, p — p), then

jG My(x,, ., X, £)AU(S)

>L MY(x,, o X0 f)dU(f)+jR MY (x,, . x,, £) 4U(S)

Z1(xy, . X,)

The final inequality above is obtained by rewriting the integrals as iterated
integrals with respect to the variables ¢, .., ¢,, where the innermost
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integral is with respect to g,. It is then straightforward to combine the
integrals to obtain this inequality. Substituting into (3) we get

Ep, U(Mb);JXI 2(xXys o X,) AP (X}, oy X,)
d

12
=Ep(t)= Jo uF’(u) du,

where F is the cumulative distribution of 7, ie, F(u)=P'{t<u}=

I —P{t>u}. Let I, (x|, .. x,) be the function that is 1 if t(x, .., x,)
> u, 0 otherwise. Then

Plt>u} =-|‘x’ I (xy, 00 x)dP/(x,, ., x,)
d

- (j I (s x) AP 1(xy, o x,,)) dP(x,)
X N\

-, (0,

where W denotes the area J’_, (1, | —u)x {/}. Note that I, ,(x, ., x,)
=11if (i) x,e W and (ii) the sequence (x,, .., x,}isin (X,— [p—u, p+u]

x {k}) "', where x, = (p, k). Since P(X,— [p—u, p+ulx {k})=1—2u/d,
(ii) occurs with probability (1 —2u/d)’~! and hence

Pe>u)=| (1 —2—d’5>” d(P(x,))z(l _2_“>'1 P(W)

d
2u\' !
:<1—7> (1= 2u).

It follows that F(u)=1— (1 —=2u/d)’ "' (1 —2u) for 0<u< ! and Flu)=1
for u> 1. Now E(t) is obtained through integration by parts:

I (xy, 0 x,)dP 7YXy, o X,y )) dP(x,),

=1
d

1/2

Ep(t)= . F{u)yudu

=(Flu)— Dul{?— fom (Fu)— 1) du

- —jm (F(u)—1)du

1/2 2N\ !
=L (1-—5) (1—2u)du
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d( 2\ 2z d o 2u)!

A 2 T Y R e (R P2 B VO

( d)‘ W), |, ( 2t( d>>( 2) du
d dpef 2uy

=577, (“‘d‘) du

_d df 4 (T
T2 z[ 2(z+1)< d> ]

_d At N
—2r+2r(t+l)(< —d> - )

This proves (3) and completes the proof of the theorem. ||

172

0

Note that as ¢ grows the above lower bound approaches d/2¢. Since the
lower bound holds for one distribution that is not varying with 7 we can
also get lower bounds on the expected total number of mistakes in the first
¢ trials.

COROLLARY 3.1. For each dz1, let X;, G, and P be defined as above.
Then for any prediction strategy Q, for each d>=1 there exists a target
Sunction f,€ G, such that for all t 2 1, the expected total number of mistakes
in prediction on the first t random examples of f, is at least

d t

Proof. Let U be the uniform distribution on G, as above. By linearity
of the expectation, when f is drawn at random from G, according to U and
the points x, .., x, are drawn independently at random according to P, the
expected total number of mistakes of Q on sam((x,, .., x,), f) is

Y Ep.y(Mp), (*)

i=1

the sum of the probabilitics of a mistake for the individual trials. Therefore
there exists a target function f,€ G, such that when the points x,, ..., x, are
drawn independently at random according to P, the expected total number
of mistakes of Q on sam((x,, .., x,), f) is at least (*). Hence 1t suffices to

show that
d t
*) > o -
( )zz(lnd 1).
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Using the bound from Theorem 3.2,

d d2 1 i+1
2 1(7+i(i+1)(<1_2) _1>)
1 d d2 dZ 1 i+1
2 (g )
1
2

‘' d t dz 1 i+1 t dz 1 i+ 1
— —_— 1___ —_ 1__
@f“@ -(1-2) .-;HI( 2)

We approximate the first sum and rewrite the second and third sum. The
last two sums cancel except for two summands:

(*)=- (dln( )+d2<1—%1>i§<1—;i>i/i
B 21+1 __1_ i - , dz
a ,-;(1 d)/' 4 +t+1>'

We now combine similar terms of the remaining sums:

crromno (1= o (0 (1-2)-0) £ (-3

—d2<1—‘li>’+l/(t+1)—d2+d2/(t+1)).

We drop the last and third to the last summands and simplify:

1V /.
(*)= 2<d1n(t)+ (d—1)— Z(l*—>/z——d2>

<d1n( t)+d*—-2d+1—-d Z (1—$>i/i+d—l—d2>

(w45 (-3))

We use the fact that In(1-a)= — ¥, a'/i (for |a| < 1) with a=1-1/d.

( (In(f)—1) +dln(‘11))
(n(@)-1) o

b - I\Jl

Il

1
>3
a(
2
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The concept class used in the above lower bounds consists of disjoint
unions of 4 initial segments. By arranging the initial segments in various
ways in R? and concentrating P on those segments we immediately get
lower bounds for other geometric concept classes. For example, consider
the concept class consisting of indicator functions for all negative
halfspaces in R (Negative halfspaces are halfspaces whose intersection
with the negative portion of the first axis is infinite, and whose intersection
with the positive portion of that axis is empty or finite.) This class has VC
dimension 4 (see [HW87]). (Since we are giving a lower bound, the argu-
ment also applies to the class of all halfspaces in R¥; this class has VC
dimension d+1.) Let S,, for 1<i<d, be the closed interval between 1
and 2 on the ith axis in R% Let P be the distribution concentrated
uniformly on U?_,S,. Now we simply embed the ith initial segment
into S, If we let hy, _,, denote the function from R to {0, 1}
defined by A, .., (x1, .., x,)=1if and only if (xy, .., x,)-(1/(q, + 1), ...,
1/(g,+ 1)) <1, then for (g,, .., g;) € [0, 1)¢ the function #,, _,, takes the
value 1 on a halfspace that cuts an initial segment from each S,. Let H,=
{h;:3e [0, 1)?} be the family of indicator functions of negative halfspaces
defined in this way. Theorem 3.2 and Corollary 3.1 clearly hold if P is as
described above, G, is replaced by H,, and U is the uniform distribution
on H,. This gives lower bounds for predicting negative halfspaces.

Similar constructions give lower bounds for the class of indicator func-
tions for orthogonal rectangles in R? (we embed two initial segments
growing away from each other in each dimension) and the class of
indicator functions for unions of & intervals in R (we embed d pairs of
initial segments in the real line, where the segments of each pair grow away
from each other). These classes each have VC dimension 2d. Thus
Theorem 3.2 and Corollary 3.1 hold for these concept classes as well, with
d replaced by 2d. In each of these cases, the algorithm-independent lower
bounds of Theorem 3.2 and Corollary 3.1 are asymptotically within a factor
of § of the upper bounds on the prediction performance of the 1 inclusion
graph strategy as given in Theorem 2.3 and Corollary 2.2, and of the
computationally efficient prediction strategies for these classes given in
examples 2.1, 2.3 and 2.4.

4. PREDICTION STRATEGIES USING HYPOTHESIS SPACES OF
SMALL VC DIMENSION

The results of the previous sections indicate that one approach to
constructing good prediction strategies is to construct strategies with small
permutation mistake bounds. Here we consider another approach, based
on the learning results of Vapnik [Vap82] and Blumer et a/. [BEHW89],
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in which a prediction is made on the basis of a consistent hypothesis
chosen from a hypothesis space of small Vapnik—Chervonenkis dimension.

DEerFINITION. For any prediction strategy @ and sample se€ S, the
hypothesis of Q generated by s, is the function A: X — {0, 1} defined by
h(x)= Q(s, x). A hypothesis 4 is said to be consistent if it correctly labels
the points of the sample s generating it, ie., if for all pairs (x, a)es,
h(x)=a.

THEOREM 4.1. Let H be some collection of functions from X to {0, 1}
with VCdim(H )= d = 1. Suppose that for all samples in S, the hypothesis of
prediction strategy Q is an element of H. Also assume that Q always chooses
a hypothesis consistent with the sample. Then MQ, A< 2(d+ 1)/
log,(4et/d) for all t>d.

Unlike in Theorem 2.3, in this bound there is no attempt to minimize the
constants. We focus instead on providing a short proof. Before establishing
this result, we prove the following lemma.

DEFINITION. Let Q be a prediction strategy for F. For each t2 1, fe F,
distribution P on X and Xe X', ER}, , ,(X)= P{xe X: Q(sam(X, f), x) #

f(x)}-

Thus ERy, , o(X) is the probability that the hypothesis of Q) generated by
sam(X, /) disagrees with the target function f on a randomly drawn point.
This is the notion of the “error” of a hypothesis used in Valiant’s learning
model [HKLW91, Val84].

LemMa 4.1. E(ER}, , ,) = Ep-1i(My'}) for any prediction strategy Q,

target function f € F, distribution P on X and ¢t > 0.
Proof.
EP’*I(M'QTII' )= M1Q+f1 (X150 X, 4 ) AP l(xl, o Xp i 1)

Xxitl

- (L MY (oo Xy p) dP(X, )) dPi(x,, .., X,)

X!

by Fubini’s theorem. However, for fixed (x,, ..., x,),

IXMb+; (X715 s xl+])dP(xl+l)=ER{Q,f,P(xl9 s Xy)
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by definition. Hence
Epe(My}) = L[ ER), , p(x1, o X,) 4P (x,, .y X,)

=E{ER, ,,). 1

Proof of Theorem 4.1. Let d=VCdim(H). Since Q is consistent and
uses hypotheses in H, it follows from Theorem A2.1 and Proposition A2.1
of [BEHWS89] (see [VC71, Vap82]) that for all f e F, distributions P on
X, e>0and 1>d,

P{x: ER'QJ;P()E) >e) <2(2et/d)? 22

Since ER{, ; <1, this implies that E.(ER} , ,) <&+ 2(2et/d)*2 7 for
all ¢>0. Letting &=(2/r)(log,(t/d)+ dlog,(2et/d)), it follows that
Ep(ERy, , 5) < (2/t)(logy(1/d) + dlog,(2et/d) + d) < (2(d + 1)/1) log,(4et/d).
The result then follows from Lemma 4.1. ||

Note that to be always able to find consistent hypotheses in H,
VCdim(H) must be at least VCdim(F). Thus for sufficiently large ¢, the
bound of Theorem 4.1 is greater, by at least a factor proportional to
log(#/VCdim(F)), than the bound for an algorithm with an optimal
permutation mistake bound. The following theorem shows that this gap is
real by demonstrating that the bound in Theorem 4.1 is tight to within a
constant factor.

THEOREM 4.2. There exists a family of countable domains {X,}5_, and
corresponding concept classes {F,}5. | with VCdim(F,)=d for which there
is a prediction strategy LEGAL such that

(1) when LEGAL is presented with a sample from S, it chooses a
consistent hypothesis from F,, and

(2) forany d=1
t

- d
M_soarr ()2 (1= 1/e—o(1)) TIn~

Here o(1) represents a function of 7 that goes to zero as 1 — oc.

Proof. We first describe the function class and the prediction strategy
LEGAL for which the theorem holds. Let the domain X, consist of d
disjoint copies of the natural numbers, which we will call types. The
function class F, consists of all functions that are 1 on at most one point
in each type. It is easy to see that the VC dimension of F, is d.

Given sample s=({x;,a,), .., (x,.,,4,_,)) and an unlabeled point x,,
LEGAL predicts as follows: if any point in x,’s type occurs in s with label

643/115:2.9
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1, then LEGAL predicts 1 iff x, is this point, else LEGAL predicts 1 iff x,
is the smallest number in its type that does not occur in s. Note that for
any sample s in S, the hypothesis of LEGAL is 1 on exactly one point
from each type and is thus in F,. Clearly the hypothesis is also consistent
with the sample s.

Recall that Mg (1) =sup Ep(M} 0, ) over all feF, and
distributions P on X, For each ¢, to obtain a lower bound b(¢) for
MLEG,,L‘,H(t), it suffices to exhibit a function f € F, and a distribution P, ,
on X, such that EP:“,(M;‘EGAL,_/') = b(t). To obtain our bound, for all ¢, with
t+ 1 2=d, we will let f be the constant function 0 and P, , , be the distribu-
tion that is uniform over the union of the sets {1, .., n} from all 4 types and
0 elsewhere, where

{
"= {d(ln(t/d) “In ln(t/d))—l’

For each ¢, let p(t) be the probability that LEGAL makes a mistake on
the rth trial, ie., p(7) =EP:,,,(M;.EGALJ)- We will obtain a lower bound for
p(t+1). For the target function f, LEGAL makes a mistake on the point
X, .1 only when x, | is the smallest number of its type that does not occur
in the previous ¢ points {x, .., x,}. All types are equally likely, so we may
condition this probability on x,,, being any particular type, say type L.
Thus p(z + 1) is the probability that x,, , is the smallest number of type 1
that does not occur in {x,.., x,}, given that x,,, is type 1. Clearly
p(t+1)=q(z)/n, where g(¢) is the probability that there is at least one of
the first » numbers of type ! that does not occur in {x,, .., x,}.

For each ¢ let us define the random variable X', where X'(x,, ..., x,) is the
number of type 1 numbers from {1, .., n} that do not occur in {x,, .., x,}.
Thus ¢(¢)=1— Prob(X'=0). We will show that for any d, as ¢ — oo, the
distribution of X' approaches the Poisson distribution with parameter A =1
(see, e.g., [Fel68]). Hence Prob{X’'=0) approaches 1/e. Since 1/n= (d/t)
(In(t/d) — o(In(t/d)), this gives our result.

It remains to show X' converges pointwise to the Poisson distribution.
For each i, 1 €i<n, let X! be the random variable that is 1 if the number
i from the type 1 numbers does not occur in {x, .., x,}, else 0. Thus X' =

"_ X{. Now for each r, 1 <r<n, let S| be the rth binomial moment of
X‘;ie., S!is the sum over all subsets of {1, .., n} of size r of the probability
that no number in that subset occurs in {x,.., x,}. It is easily verified
using the standard inclusion/exclusion arguments (the Bonferroni
inequalities) that if

A"'I'

lim S{=—
oo )
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for all r then X' converges pointwise to the Poisson distribution with
parameter 4, ie., lim,_  Prob(X'=k)=e *I*/k! for all k>0 (see, eg.,
[ P85, Appendix V]).

Let 4 be any set composed of r of the first n type 1 numbers. Since each
point in 4 has probability 1/nd, the probability that none of the points
{x,, .. x,}arein 4 is (1 -r/nd)". Hence

=(fo-5)

It suffices to show that lim, _, ., r! S{= 1. Taking logs and simplifying, this

reduces to
r—1 r
-~ In{1—— 0.
(igoln(n 1)>+t n( nd)——»

Since r is fixed and » goes to infinity, (¥X7_, In(n —¢}) —r In n > 0. Thus it
suffices to show that

r
rlnn+tln<1—;‘}>—>0.

Let
. t
" = dn(/d) —In In(z/d))’

For sufficiently large ¢,
tIn(1 —r/n'd)+ trin'd < t In(1 — r/nd) + tr/nd <0.

It can also be shown that ¢ In(1 — r/n’'d) + tr/n’d - 0 as t —» oo by 'Hoépital’s
rule. Hence tr/nd + t In(1 — r/nd) — 0. Thus it suffices to show that

tr
rlInn——-0,

nd
or equivalently that

{
Inn———0.

nd

Let g(1)=In(t/d) —Inin(t/d), and write n=t/dg(?)+y(s), where 0<
(1) < 1. We first show that

t
——g(t)~0.
wd g(?)
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This can be rewritten as

1

Ve +don EH0

This is equivalent to

— (1) -0
1dg* () + (1) gty

which holds since g(7) is logarithmic in ¢ It remains to show that
In n — g(7) — 0, which is easily verified. §

In this paper we have discussed two methods for obtaining expected
mistake bounds for a prediction algorithm. The first method bounds the
probability of a mistake in terms of the permutation mistake bound
(Corollary 2.1). The second method predicts with a consistent hypothesis
and bounds the probability of a mistake in terms of the VC dimension of
the hypothesis class (Theorem 4.1). Neither of the two methods subsumes
the other. In particular, there exists a target class F for which the following
are true:

(i) There exists an algorithm @ for predicting F that uses a
hypothesis space with infinite Vapnik—Chervonenkis dimension for which
M, .(¢) =1/t

(ii) There exists an algorithm Q' for predicting F that chooses consis-
tent hypotheses from a space with Vapnik—Chervonenkis dimension 1 for
which l\A’IQ,‘,,(t) is 1.

To see this, take the domain X to be the positive integers and let the
concept class F consist of all functions from X to {0, 1} that are 1 on at
most one point. The Vapnik—Chervonenkis dimenston of F is 1. Consider
the following two prediction algorithms for F. In each case we assume that
the algorithm has received as input a sample (x,, .., x,_,)e X' ! labeled
according to some concept f € F. The algorithm has also received another
point x, e X whose label it is to predict.

The algorithm Q always predicts 0 except in the following two cases:

(1) It predicts 1 when it must do so in order to be consistent with
previous examples.

(2) It predicts 1 when all of x,, .., x,_, are odd numbers, f(x;)=0
for all ie {1, .., t—1}, and x,=2x, for some ie {1, ., t—1}.
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The algorithm Q' is the algorithm LEGAL described above, in the case
d=1. This algorithm also predicts 0 except in two cases:

(1) This case is the same as case (1) for the previous algorithm.

(2) It predicts 1 when x, is the least positive integer not contained in
{x(ynx,_}and f(x)=0forall ie {1, .., 1—1}.

The algorithm @ has a permutation mistake bound of 1/7 but uses a
hypothesis space that includes all finite subsets of the positive integers of
the form 4n + 2 for some n >0, and hence has infinite VC dimension. The
algorithm @’ chooses consistent hypotheses from a space with Vapnik-
Chervonenkis dimension 1 but its permutation mistake bound is 1 (yielding
no interesting mistake bound). (To see the latter, consider the case where
{x(, . x,}={1,.., ¢} and fis 0 on all of these points.} Thus Corollary 2.1
gives a non-trivial upper bound only for algorithm @, while the upper
bound of Theorem 4.1 is finite only for algorithm Q.

5. PAC LEARNING ALGORITHM DERIVED FROM
THE 1-INCLUSION GRAPH STRATEGY

In this section we show how the l-inclusion graph prediction strategy of
Section 2 leads to a PAC learning algorithm requiring O((VCdim(F)/¢)
log(1/6)) examples. Since the introduction of PAC learning algorithms by
Valiant [Vai84] a number of different definitions have been used. We
choose a definition that is convenient for our purposes and refer to
[HKLWO91] for a discussion of equivalent definitions.

Let F be a concept class over some domain X. Throughout this section
we assume VCdim(F) = 1. If fe F is a given target concept, # is a {0, 1}-
valued function over X, and P any fixed probability distribution on X, then
define the error® of h (with respect to f and P) as the probability that f
disagrees with # on an example (x, f(x)), where x is drawn from X
according to P. Intuitively, a learning algorithm is to output a hypothesis
that has small error with high probability by drawing a polynomially sized
sample of the target function independently at random according an
arbitrary but fixed distribution. This is formalized by having two
parameters 0 <g, d < 1 that are given to the learning algorithm, along with
access to a source of random examples of the target function, and by
requiring the following PAC-criterion: the hypothesis output by the

® This is consistent with our previous usage of error. Recall that in Section 4 we defined
ER;, , p(X) to be the error of the hypothesis of the prediction strategy Q after the sample
sam(x, f) is received.
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algorithm must have error at most ¢ with probability at least 1 — 4. The
latter probability is over the random choice of the examples, and any
randomization inherent in the algorithm.

DEFINITION. A PAC-learning algorithm A for F is an algorithm that for
all 0<e¢, d< 1, for all feF, and for all probability distributions P on X,
outputs a representation of a hypothesis fulfilling the PAC-criterion by
drawing a sample of f of size at most 1(1/e, 1/6) independently at random
according to P, where ¢ is a polynomial.

Call #(1/¢, 1/8) the sample complexity of A. Note that usually it is also
required that the hypothesis be of a particular form and that the PAC-
learning algorithm run in polynomial time. We will ignore these issues in
this section.

We now define a PAC Algorithm A4 that learns any concept class F with
sample complexity O((VCdim(F)/¢)log(1/d)). The algorithm A first runs
the deterministic 1-inclusion graph strategy of Section 2 exactly [log,(2/6)7]
times, each time using a new sample of size [4VCdim(F)/e]. After
processing each sample the final hypothesis is put in the set G. In the
second step of the algorithm we run the following procedure with a new
sample of size [ (32/e)(In(2/8) + In([log,(2/0) 1+ 1))

PROCEDURE MI(G, s).

Parameters: a finite set G of hypotheses and a sample s=(x,, a,),
(x5, a3), .., (x,, a,).

Output: the hypothesis 4 € G that has the least number of inconsisten-
cies with the sample, that is, such that |{;:a;# h(x;)}| is minimum. (If
there is a tie, any scheme can be used to break it.)

{This procedure is a standard hypothesis-testing procedure. The description
and analysis here are taken from [L89b].)

Clearly the sample complexity of this algorithm is O((VCdim(F)/e)
log(1/0)). We still have to show that the hypothesis it outputs fulfills the
PAC-criterion. First observe that by Theorem 2.2 and Lemmad4.1 the
expected error of each hypothesis of G is at most ¢/4. Thus by Markov’s
Lemma each hypothesis of G has error larger than ¢/2 with probability
less than 1/2. Since a different sample is used for each hypothesis of G,
this holds independently for each of the [log,(2/0)7] hypotheses in G. It
follows that & has a hypothesis of error at most &2 with probability
larger than 1—3/2. By the following lemma of [L89b], if G has a
hypothesis of error at most &/2 then M, when executed with a sample of
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size [(32/e)(In(2/8) +In([log,(2/6) 1+ 1)), outputs with probability at
least 1 —3/2 a hypotheses of G with error at most &.

LemMma 5.1.  Fix any target function [ and a probability distribution P
on the domain of f with respect to which the error of the hypotheses is
defined. Suppose 0 <e <1 and let G be a finite set of hypotheses containing
at least one hypothesis with error at most ¢/2. Then if x,, x,, .., x, are
drawn independently at random according to P, with probability at least
1 — (|G| + 1) e %2, the error of the hypothesis output by MI is at most ¢
when given the sample s = (x,, f(x,)}, (x5, f(x3)), ..y (x,, f(x,)}).

We conclude that the hypothesis output by the above algorithm fulfills
the PAC-criterion. We thus obtain the following theorem:

THEOREM 5.1.  For any concept class F of VC dimension at least one,
there is a PAC-learning algorithm with sample complexity O((VCdim(F)/e)
log(1/)).

6. CoONCLUSION AND OPEN PROBLEMS

We have introduced a computational model of learning related to the
PAC model, but focusing on minimizing the probability of mistakes in
prediction instead of producing a hypothesis in a specific form. We have
characterized the best achievable performance bounds for prediction
strategies in this model, at least to within a small constant factor, and
developed prediction strategies that achieve them. Finally, we have
compared the performance of these new prediction strategies to those
obtained by the “standard” PAC strategy of learning by finding consistent
(or “almost” consistent) hypotheses in a hypothesis space of small VC
dimension. This comparison has shown that our method of using the
l1-inclusion graph to directly minimize the probability of predictive error
achieves improved predictive performance. The prediction strategy that is
based on the 1-inclusion graph also leads to a PAC learning algorithm that
for some ranges of the parameters requires a smaller sample size than
previous algorithms. Furthermore, the design techniques and analytic tools
we develop here, especially those involving the permutation mistake bound,
may also be useful in designing and analyzing other learning algorithms in
situations where efficient on-line predictive performance is an issue {(e.g., in
robotics).

However, before serious consideration of practical applications, there is
still much to be done to make our model more flexible and more general.
One step would be to extend our measure of predictive performance, and
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our results, to the more general measures used in statistical decision theory,
in which the prediction algorithm can choose from a variety of responses,
and receives a real-valued reward or penalty for each response depending
on the current situation. An extension of the PAC model along these lines
is suggested in [H90,92].

Even more important will be to generalize the prediction model to allow
various types of noise in the labels of the examples. Here there are also
many approaches, from the non-probabilistic notion of “anomalies” studied
in [L89a] to the random noise model of [AL87] or the more general
stochastic models of [KS94, H90,92]. These latter noise models are
taken from work in pattern recognition and statistical inference, in which
random examples are generated directly from a distribution on the set of
all possible (labeled) examples. It is especially important to generalize the
results on prediction strategies to handle this case insofar as it is
possible.

Another important direction for further research involves weakening
the assumption that the target function and domain distribution are
chosen by an adversary. It would be nice to have a good general, dis-
tribution specific analysis of the probability of a mistake at trial ¢, even
if it was still worst case over all possible target concepts in a given con-
cept class F. However, we could go still further and assume that the
target concepts in F are selected at random according to some specific
distribution as well. This would lead to a Bayesian analysis, instead of
the minimax analysis used here. Some results in this direction are given
in [HKS941.

A number of smaller technical issues remain as well. Of these, the most
intriguing is the question of the best possible constant for Theorem 2.3.
Can we show that for any concept class F there exists a randomized
prediction strategy @ with MQVF(t)ScoVCdim(F)/t, where c,< 17
Theorem 3.2 shows that this is not possible with ¢, <3, but this still
leaves some gap.

However, as with the PAC learning model, the most significant open
problems that remain concern the existence of computationally efficient
learning/prediction algorithms. The time complexity of the 1-inclusion
graph strategy grows exponentially as VCdim(F) increases. Thus this
strategy is not computationally feasible for many target classes for which
the VC dimension grows polynomially in the relevant parameters. Still, in
some cases, such as intersection closed concept classes, unions of intervals,
and half-spaces, our methods lead to essentially optimal prediction
strategies with time complexities polynomial in the VC dimension.
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